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An attempt is made to derive complete sets of conservation laws for various flows. 
It is shown that the equations of three-dimensional adiabatic flow cannot be 
transformed into a complete set of conservation laws. It is demonstrated that 
potential vorticity is the only material invariant of shallow-water flow. A complete 
set can be derived for three-dimensional homogeneous flow, if Lagrangian tracers are 
added. 

1. Introduction 
Conservation laws are of central importance to fluid dynamics. For example, the 

discovery of the conservation of potential vorticity by Ertel (1942) led to a wealth 
of new insights in meteorology and oceanography (see Hoskins, Mclntyre & 
Robertson 1985, and Bryan 1987 for reviews). Ertel’s discovery initiated a search for 
additional conservation laws (e.g. Ertel & Rossby 1949 ; Fortak 1956 ; Hollmann 
1964). I n  general one may look a t  a flow in N-dimensional space represented by K 
variables rk and governed by M diagnostic and K -M prognostic equations. A set of 
conservation laws 

(1 .1)  - dci = 0 (i = 1, ..., I) 
dt 

is complete if the flow evolution can be determined in time through ( 1 . 1 )  if all 
material invariants cc(x, t )  are given a t  t = 0, say. This means, in particular, that the 
velocity u(x, t )  can be determined from ci(x, t )  : 

0 = V ( C i ) ,  (1.2) 
where the symbol V denotes an operator. If, for example, u must be derived from 
vorticity q of two-dimensional homogeneous flow one has to  invert the Laplacian in 
Vz$ = q to  obtain the stream function $. With u = k x W@ one has V = (k x V ) T 2  
(see $3.2). I n  general boundary conditions are needed as well to determine u. In  what 
follows we shall impose periodic boundary conditions to avoid complications. Note 
that (1.2) does not contain time explicitly. Of course, similar relationships hold for 
other flow variables like density or temperature if a complete set of invariants exists. 
We require in turn that all ci can be determined if the flow variables are known: 
ci = ct(rk). The functional relation cr(rk) may also involve differentiation of the 
variables (see, for example, (2.5)-(2.7)). However, the definition of an invariant 
should not involve time explicitly. In  many cases it proves convenient to add new 
variables and corresponding equations to the original flow description and to search 
then for a complete set of material invariants for the extended problem. For 
example, Hollmann (1964) added an ‘action function ’ W (Wirkungsfunction ; see 
(2.4)) to the basic variables of adiabatic three-dimensional flow in order to obtain a 



544 J .  Egger 

complete set of conservation laws. However, Dikyi (1972) pointed out that 
Hollmann’s set is not complete since W cannot be derived from the invariants (see 
also Mobbs 1981). So we are still left with the problem if there exists a complete set 
of conservation laws for an adiabatic fluid. More generally one may search for a 
complete set for any type of flow where, of course, only inviscid unforced flows are 
admitted. For example, a complete set is known for two-dimensional homogeneous 
flow (see $3) but has not yet been derived for three-dimensional homogeneous flow. 
At this point it is convenient to introduce Lagrangian tracers X,, j = 1 - N ,  where the 
position vector X =  X ( x ,  t )  = (Xl, ..., X N )  gives the position of a particle in space a t  
time t = 0 which is located a t  x a t  time t, so that X(x,O) = x. Here and in what 
follows we assume that the flow is sufficiently smooth so that the relation X = X ( x ,  t )  
can be inverted to yield x = x ( X , t ) .  The Lagrangian tracers are conserved 

dx. 
3 = 0. 
dt 

Now let us look a t  a flow and assume that a complete set of I material invariants 
exists. The flow equations may include (1.3). If not we add (1.3) to the system. The 
extended set must be complete, too. We can integrate the assumed complete set of 
conservation laws ( 1 . 1 )  in time (except (1.3), of course) to obtain I relations 

The extended system contains then M + I  diagnostic relations and the N prognostic 
equations (1.3). This means that only N prognostic equations of first order are needed 
to integrate a flow problem in time where a complete set of invariants exists. We 
could have arrived at the same result by introducing N out of all ci as Lagrangian 
tracers (provided I >  N ) .  

2. Three-dimensional adiabatic flow 
The equations of three-dimensional adiabatic flow read 

du 1 - _  - - -Vp-V$,  
dt P 

= - p V . v ,  d p  
dt 

= 0, 
d8 
dt 
- (2.3) 

where the components of velocity v ,  density p and potential temperature 8 are the 
variables, $ = gx is geopotential and p is pressure with p = ( 8 p R / ~ E ) l / l - ~ ,  k = R/c,, 
p ,  a constant reference pressure. 

Obviously c1 = 0 is conserved. Ertel (1942) has shown that potential vorticity 
c p  = V B . q / p  is also conserved where q = V x v is vorticity. 

Up to now no additional invariant has been found for (2.1)-(2.3). Hollmann 
extended (2.1)-(2.3) by adding the action function Was a variable which is predicted 
according to 

d W - 1 2  - I v  -$-c ,T ,  
dt (2.4) 
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where T = S(p/p,)‘ and W = 0 a t  t = 0. Hollmann showed that 
1 

P 
C, = - (VC, x VC,). A, 

1 
P 

c4 = - (VC, x VC,) * A, 

1 

P 
c5 = - (VC, x VC2) * vc ,  (2.7) 

are conserved in addition to c1 and c2 where A = v - V W .  He demonstrated that p,  A 
and 8 can be derived from cl, . . . , c5 a t  least if degenerate situations are excluded. Thus 
v can be determined if W is known. Note that q = V x A can be determined even if 
W is not known. If the set c1-c5 is to be complete, we must be able to eliminate (2.4). 
In  other words, W must be derived from ci,  i = 1 -5  : 

w = W(ct) .  (2.8) 
The operator W does not depend on time. Since (2.8) must hold a t  t = 0 as well as 
a t  any time t > 0 and since the initial distribution of all ci can be chosen almost 
arbitrarily the condition W = 0 a t  t = 0 implies that the operator W yields W = 0 a t  
any time, in contradiction to (2.4). Thus W is not completely determined through c , - ~  
and Hollmann’s set is shown to be incomplete. So far we have essentially recovered 
Dikyi’s (1972) result. We cannot exclude the possibility that one more invariant c6 
will be found. This new invariant is useful only if it does not depend on c,, ..., c5, i.e. 
there should be no relation c6 = V,(c,, ..., c5). Of course, we still can derive A from 
c1 . . . , c5. To derive v we have to know W. This requires W to be expressed in terms of 
c,, ..., c6, Since W = 0 at t = 0 it follows W = 0 a t  any time. Thus c 1 x 6  is not a 
complete set. As a matter of fact c6 is not independent of cl, c5. If c,, . . . , c5 are specified 
a t  t = 0 we can determine the initial fields of velocity and density. Since c6 = c6(p, v ,  0) 
the initial distribution of c6 can be derived from c,, .. ., c5, i.e. c6 depends on c,, .. ., c5. 
There is still the possibility that  a complete set exists for (2.1)-(2.3) but not for 
(2.1)-(2.3), (2.4). However, if that were the case, we need only add c3 and c4 to this 
set to obtain a complete set for (2.1)-(2.3), (2.4) in contradiction to what has been 
found above. It follows that a complete set of conservation laws does not exist for 
three-dimensional adiabatic flow. We can arrive a t  the same result by inserting 
c,, ..., c5 in (2.4) 

3W -+ (A - V W )  . V W  = +(A - VW)2 - 4 - c ~ ( c ~ ( R ( V C ~  x V C , ) - V C , / C ~ ~ , ) ~ ) ” “ ~ ” ’ .  
at (2.9) 

Since A(x,t) can be derived from c ~ - c ~ ( x , ~ )  and W ( x , O )  = 0 i t  follows that W can 
be determined through (2.9) if c,, ..., c5 are known at all times < t. However it is not 
possible to determine W if all cl, . . ., c5 are just known at time t as is suggested by (2.8). 

3. Homogeneous fluids 

The equations of shallow-water flow are 
3.1. Shallow-water flow 

dv 
- = -gVH, dt 

- = - H V . v ,  
dH 
dt 
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where H is the depth of the fluid and u = (u, v).  We shall show that potential vorticity 

is the only invariant of (3.1), (3.2) so that a complete set of conservation laws does 
not exist. We follow again Hollmann (1965) in our proof. Hollmann extended (3.1), 
(3.2) by adding an action function W governed by 

- = ku2 - gH, dW 
dt 

with W = 0 a t  t = 0. Then 
c2 = (kA  x V c , ) / H ,  

(3.3) 

(3.4) 

c3 = Jtc , ,  c J / H  (3.5) 

are invariants where again A = v - V W  and u(x ,  t ) ,  H ( x ,  t )  can be determined if c1-c3, 
W(x, t )  are known. Again it is straightforward to show that (2.8) cannot hold and that 
there is no complete set of invariants for (3.1), (3.2). In particular, W cannot be 
related diagnostically to invariants. Assume now that a new invariant c4 is derived 
which is based on the original variables of shallow-water flow: c4 = c 4 ( u , H ) .  Let us 
integrate (3.3) and (1 .1 )  with i = 1 ,  ..., 3 in time starting from initial values c i ( x , O ) ,  
i = 1, ..., 3. Since W = 0 at  t = 0 u(x,O),  H ( x , O )  can be derived from c ( ( x , O ) .  
This implies that c 4 ( x ,  0) can be evaluated once the initial values ci(x,  0) are known. 
Since all ci are invariants, c 4 ( x , t )  can be determined also a t  any time t > 0 from 
c c ( x ;  t ) ,  i = 1, . . . , 3  : c4 = q 4 ( c 1 ,  c2 ,  c 3 ) .  Moreover, 

u = - c 4 ( c 1 , c , , c , ) + v w ,  (3.6) 

H = J ( C 1 ,  c , ) /c3,  (3.7) 
where the symbol d denotes the operator needed to derive A from c l ,  c2,  c3 .  We insert 
(3.6), (3.7) in c4 = c4(u,  H )  to obtain 

cq q4(c1? c 2 ,  c Q )  = c 4 ( d ( c 1 >  c 2 >  c,) + vw, J ( c l >  c , ) / c , ) .  (3.8) 
Clearly c4 must be independent of VW so that c4 = c4(q,  H )  since it is only by applying 
the operator V x to (3.6) that we can remove the term V W  in (3.8). 

If c4 is independent of c1 continuity yields the new invariant 

c5 = J ( c , , c , f / H .  13.9) 
Of course c l ,  c p ,  c5 are independent. However, by inserting the expressions 

H = Jb,, c4) /c5 ,4  = c1 J ( c , ,  C p ) / C g  

in c4 = c4(q ,  H )  we find immediately that c l ,  c4,  c5 are dependent. It follows cp = c 4 ( c l ) .  
Potential vorticity is the only invariant of shallow-water flow. This result can be 
readily extended to hydrostatic compressible three-dimensional flow. Potential 
vorticity (k .V,  x v )  atI/i3p is the only invariant in that case (except 8, of course). 

As for one-dimensional shallow-water flow it  is straightforward to show that the 
flow equations cannot be reduced to a prognostic equation of first order for X,. So no 
complete set exists. 
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3.2. Two-dimensional $ow 
Conservation of vorticity 

= 0, (3.10) dt 

q = V2$ (3.1 1) 

allows the determination of the flow for all times since v = k x V$ can be derived 
from q. This statement is strictly correct only if there is no potential flow. Owing to 
our choice of periodic boundary conditions translation at constant speed is the only 
admissible type of potential flow. It can be removed by a simple transformation of 
coordinates. Thus (3.10) is essentially the complete set we are searching for. 

- dq 

3.3. Three-dimensional homogeneous flow 
The basic equations are 

dv 
- = --PIP,> (3.12) dt 

v-v = 0 (3.13) 

(p,,, constant), and we shall show that a complete set of conservation laws exists if we 
extend (3.12), (3.13) to include (1.3). Ertel’s (1942) theorem reads 

d 
dt 
- (q .Vh)  = 0 (3.14) 

for homogeneous flow where h milst be conserved. If we choose h = X i  we obtain 
three conservation laws (1.1) with 

ci = q * VX, (3.16) 

(see also Serrin 1959). A complete set is formed by (1.3), (3.15). If X i @ ,  t )  and ci(x, t )  
are known at a certain time, one can derive q from ci and v can be determined from 
q because of (3.13). As a matter of fact, one out of the three invariants (3.15) is 
redundant since vorticity is determined completely if two of its components are 
known. This result can be readily extended to incompressible flows since the equation 
of continuity provides us with the additional conservation law dpldt = 0 in that  case. 

4. Concluding remarks 
We have shown that complete sets of conservation laws exist for periodic 

incompressible flow in three dimensions if the Lagrangian tracer equations (1.3) are 
added to the system. A complete set does not exist for shallow-water flow nor for the 
most general case of compressible adiabatic three-dimensional flow. Potential 
vorticity is the only invariant of shallow-water flow. A corresponding search for 
complete sets of conservation laws can be conducted for nearly geostrophic flow 
(Salmon 1985) and intermediate flow models (e.g. McWilliams & Gent 1980). New 
problems come up if we admit more complicated boundaries. In  that case potential 
flow need not be trivial. For the sake of brevity we abstain here from a discussion of 
such complications. 

The author is grateful to H.-D. Schilling and to the referees for constructive 
criticism and valuable comments. 
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